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The methods of geometric optics are employed to determine the spectral distribution 
of the time averaged intensity of light scattered by thermal fluctuations in an inhomoge- 
neous fluid. It is assumed that all average quantities undergo little change over distances 
comparable to a wavelength of the incident or scattered light. An elementary example 
corresponding to gravitational effects is considered to indicate the use of the method. 

1. INTRODUCTION 

In the last decade interest in the theory of light scattering from fluctuations has 
rapidly accelerated due to breakthroughs in instrument development. The high 
spectral resolution of modern detectors and the narrow bandwidth of the laser 
has made it possible to observe both the temporal and spatial properties of cor- 
relations in transparent media. One significant limitation in the present theory of 
light scattering is the assumption that the system supporting the fluctuations which 
produce the scattering is spatially homogeneous. Consider, for example, the 
scattering of light from a system near the critical point. As the system approaches 
the critical point, the compressibility becomes very large. Consequently, the 
gravitational field, which is so weak that it may be neglected far from the critical 
point, produces a large density gradient near the critical point. The effect of the 
large density gradient has been ignored in both the electromagnetic and thermo- 
dynamic theory of light scattering from a system near the critical point [I] There 
are many other examples relating to biological and chemically reactive systems. 

The present electromagnetic theory of light scattering from homogeneous 
systems has evolved along two distinct lines. The Einstein approach [2-4] assumes 
that the fluctuations are small and linearizes the appropriate Maxwell equations 
governing the response of the system. The result is identical to the Born approx- 
imation. The method used by Landau and Placzek, [5-81 applies similar approx- 
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imations to the integral equations governing the electric and magnetic fields. 
If, in addition to the Born approximation, we are willing to assume that there is 
very little variation in the ensemble average of thermodynamic quantities associated 
with the system over distances comparable to a wavelength of the incident or 
scattered light, we may employ the methods of geometric optics [9] to obtain the 
spectral distribution of the scattered light from an inhomogeneous system. 

In this article we develop a method for determining the spectral distribution of 
light scattered by an inhomogeneous fluid. We first apply the Born approximation 
to Maxwell’s equations to obtain a second-order partial differential equation for 
the scattered electric field and another for the magnetic field. We then use the 
methods of geometric optics to obtain a Green’s function dyadic [lo] for each 
field. Finally, we consider an elementary example to indicate some of the steps in 
the application of the procedure to a particular problem. 

2. ELECTROMAGNETIC THEORY: DIFFERENTIAL EQUATIONS GOVERNING FIELDS 

Our purpose is to determine the electric and magnetic fields E, and H, produced 
by the scattering of light by fluctuations in an isotropic spatially inhomogeneous 
system composed of isotropic molecules. We shall restrict our study to those 
I?ourier components of E, and H, which are characterized by wavelengths greatly 
in excess of the distance between adjacent molecules. The same considerations, 
of course, apply to the unscattered light. The response of the fluid is determined 
by an instantaneous permitivity E, an instantaneous permeability p, and the 
appropriate Maxwell equations: 

VxH=~~& cat 2 (2.1) 

VxE=--f&H, (2.2) 

V . /AH = 0, (2.3) 
V . EE = 0, (2.4) 

where E and H are the total electric and magnetic fields. 
We may regard E as the sum of two terms, an average term and a fluctuation, 

and similarly for CL: 
E = %J + El = “o(l + E), (2.5) 

P = PO + CL1 = POU + 7). (2.6) 

co = cc> = Eo(X), (2.7) 
PO = (PL) = POW, (2.8) 

151<1, lrll<l. (2.9) 
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The brackets in Eqs. (2.7) and (2.8) represent the ensemble average. We shall 
only consider systems which obey the relationships (2.9). 

The equations governing the scattered fields El and H, are found by writing 

E = Eo + 4 , (2.10) 

H = H, + H, , (2.11) 

where E, and H, are the fields in the absence of fluctuations. We only retain terms 
of the first order in small quantities after substitution of Eqs. (2.5), (2.6), (2.10), 
and (2.11) into Eqs. (2.1)-(2.4). 
We quickly obtain 

VxH =%E 0 cat O O’ (2.12) 

V x E,= -f&,H,, (2.13) 

V.poH, = 0, (2.14) 

V . q,EO = 0, (2.15) 

V x H, = ; $ q,(E1 + CEO), 

VxEl= -;&o(H,+~Hol, 

(2.16) 

(2.17) 

V . po(H, + $3,) = 0, (2.18) 

V . c,(E, + fE,) = 0. (2.19) 

Equations (2.16)-(2.19) are simply the differential form of the Born approximation 
for E, and HI . 

Our prescription is to construct a second-order partial differential equation 
obeyed by El alone, and another obeyed by HI, We shall then determine the 
appropriate Green’s dyadics for these inhomogeneous equations in the assymptotic 
limit of geometric optics. Many of the required mathematical manipulations are 
given in great detail by Born and Wolf [I I]. We shall refer to this treatise frequently 
and, in particular, to the 1970 edition. Chapters 1 and 3 of all the editions starting 
with 1959 are substantially alike. All references to particular equations and 
paragraphs in Born and Wolf will be preceded by an S. 

We apply the procedures used by Born and Wolf to obtain Eq. (S 1.2.5) from 
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Eq. (S 1.2.1) (their notation) to our Eqs. (2.16)-(2.19) making use of Eqs. (2.14) 
and (2.15), to obtain 

D,E, = -47rP, (2.20) 

D,H, = -4rQ. (2.21) 

In Eqs. (2.20) and (2.21), 

Ddx, E. ) /ho) = v2 - f g + VP log EON * + (V log po) x [V x , (2.21) 

4 = 4(x, po , ho), (2.22) 

47rP= V[v+(Vlog~o)]~A-~$A-~~V x B, (2.24) 

47rQ= VIV+(Vlog~o)].B-~~B+~~V x A, (2.25) 

A = @o, B = rlHo, ?I2 = co/Lo . (2.26) 

A and B vanish outside of the scattering volume, and in particular in the radiation 
zone, because S and 7 are assumed to be different than zero only in the finite scat- 
tering volume V. In an actual experiment this is accomplished by allowing E, 
and Ho to be different than zero only in V. 

To determine the spectral distribution of the time averaged radiated power, 
we need to know the temporal Fourier transforms of E, and H, . To insure that 
the transforms exist we replace 5 by &- , 

ET = 0, ltl > T, 

&- = 5, ltl -CT 
(2.27) 

and similarly for all other quantities so labeled. We will eventually determine the 
spectral distribution of the time averaged intensity in the limit T d co. Writing 

33,+(x, w) = & / dt ei*ltE1(x, t), (2.28) 

and similarly for all quantities so indicated we obtain, after taking the transform 
of Eqs. (2.10) and (2.21), 

D,+E,+ = -47rPT+, (2.29) 

D2+H1+ = -4rrQT+, (2.30) 
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where 

MILLER 

D,+ = 4+(x, R; co , po) 

= v2 + n?P + V(V log co) * + (V log /L”) 

D2+ = 4+(x, R; p,, , ~01, 

f&T, 

X vx , (2.31) 

(2.32) 

(2.33) 

4nPr+ = V[V + (V log eO)] . AT+ + R2n2A,+ + i&oV x Br+, (2.34) 

47rQr+ = V[V + (V log po)] . Br+ + R2n2Br+ - &,,V x Art. (3.35) 

If the molecules are not isotropic, the fluctuations cl and p1 are dyadics, c1 
and l.rl . For such a system the only modification of the above is to replace A by 
< * E, and B by n * Ho, where 

r = El/% 1 

‘1 = CLJPO * 
(2.36) 

3. GREEN'S DYADICS FOR D,+ AND D,+ 

The Green’s dyadics for the operators D,+ and D,+ are, in general, very difficult 
to obtain. However, if we are interested in El+ and H,+ for values of Ig such that 

f Vlogp, << 1, fvlogE, << 1, (3.1) 

we may apply the techniques of geometric optics (see Ref. 11, Chap. 3), or what 
is more generally referred to as the Eikonal method [6], to obtain the Green’s 
dyadic G,+(x, x’, R; co, po) associated with the operator D,+. The dyadic G,+ 
corresponding to D,+ is obtained by interchanging c,, and p. in G,+. We are, of 
course, seeking the fundamental Green’s dyadics corresponding to outgoing waves 
at infinity. The differential equation satisfied by G,+ is 

D,+G,+ = -4718(x - x’)l, (3.2) 

where I is the identity dyadic and 6(x - x’) is the three-dimensional Dirac delta 
function. 

We write 

G,+ = eiiz $I e& , (3.3) 
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where the j& are an orthonormal basis set for a three-dimensional system of 
orthogonal coordinates xj. When x # x’ we observe that each ej satisfies 
Eq. (S 3.1.41) and LZ’ satisfies Eq. (S 3.1 .15a) through first order in small quantities. 
We obtain 9 immediately from Fermat’s principle (Ref. 11 Chap. 3.3.2) 

2(x, x’) = jx ds II, (3.4) 
CX’ 

where C is a contour that minimizes 9 and ds is an element of arc along C. In the 
development presented here we shall assume that iz is everywhere continuous so 
that the solution to Eq. (3.4) is unique. Discontinuities in 12 will give rise to multiple 
contours and will complicate the solutions. Hence, the effects of any reflecting 
surfaces must be dealt with by the experimentalist. 

The magnitude of e, is given by Eq. (S 3.1.45) and is seen to be independent of 
the subscriptj. Thus, we may write 

e5 = &ii, , (3.5) 

where fij is a unit vector. From Eq. (S 3.1.49, 

(b), = (Ql exp [ - i $” ds $V * (i V-Y)], 
cS’ 

(3.6) 

where the subscripts 1 and 2 signify two points on the ray trajectory C. Let 1 
denote the tangent vector to C, 

dx 
P=-&. (3.7) 

We must choose P pointing away from x’ and toward x, that is distance must be 
measured along C going from x’ to x, to insure that G,+ corresponds to an outgoing 
wave. Hence 

Vdp=ng 

and the fij satisfy the differential equation (see Eq. (S 3.1.48)) 

(3.8) 

da, 
ds 

- -(i& * v log n) 1. (3.9) 

To illuminate the behavior of G,+ as x approaches x’, we write Eq. (3.6) in the 
form 

(&Fw)~ = (&w)~ exp [- i L:: ds V * S] 9 (3.10) 

581/7/3-15 
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where 
m = (Eo//.Qy2. (3.11) 

Writing r = x - x’, r = 1 r /, P = r/‘/r, we observe that if 0 < Rr < 1, then 
P e F as a result of inequalities (3.1). Hence, from Eq. (3.10), as r approaches 
zero, 

where 8’ is nonsingular at Y = 0. If we multiply Eq. (3.2) by r2 (r2 factors the 
Jacobian in spherical coordinates) we observe that only the contribution from 

is singular on the left side. Recalling that 

%r) = & W), 

we obtain two results: First of all, (&)1 in Eqs. (3.6) and (3.10) must be constructed 
in such a manner that 8’ approaches unity as r approaches zero; secondly, at 
x = x’, t$ = gi . These two results coupled with Eqs. (3.6) and (3.9) completely 
determine 8 and Qj . 

Carrying out the above procedures for the dyadic G2+, we quickly find 

G,+ = eiipX x Eijxj , (3.13) 

where 
2 = bm(x)/m(x’). (3.14) 

In the asymptotic limit of geometric optics, we obtain 

E,+(x, w) = i d3x’ G, + * PTt(x’, w)(l + order S), (3.15) 

H,+(x, w) = 1 d3x’ G,+ . Q=+(x’, w)(l + order S), (3.16) 

where 6 is on the order of 1(1/I) V log E,, / or 1(1/A) V log p,, I. There are, of course, 
other corrections due to the fact that we started with the Born approximation. 

The time averaged energy flux is given by 

s = & $t% & 1 dt E, x H, = k & s mdwW(E;* x HI+). (3.17) o 
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Hence, the spectral distribution of the time averaged intensity is given by 

,a(~, w) = ;z & / S’(E;* x H,+) /. (3.18) 

We mention that, to the same order of accuracy, the usual methods of geometric 
optics may be employed to determine the unperturbed fields E, and H,, . We shall 
perform the details of this procedure in the following example. 

4. AN APPLICATION: GENERAL CONSIDERATIONS 

We shall consider the effect of the gravitational field on Gl+, Gz+, E, , and H, 
under very special restrictions for a nonmagnetic (JL~ = 1, n = 0) fluid. Before 
we make any restrictions let us consider some aspects the general problem. In the 
remainder of the discussion we shall use (x, y, z), a Cartesian coordinate system 
with basis set (a, f, 5). We take 2 in the vertical direction with the gravitational 
field in the -2 direction. The scattering medium is confined to a cylinder with 
its centroid at the origin, axis of symmetry prallel to 2, height 2L, and radius L. 
Within the cylinder E,, = E,,(Z). In order to avoid introducing any discontinuities in 
E,, we divide space into three regions (see Fig. 1) and set 

Eo = Eo(L), z > L, 

co = Eo(Z>, IZI <L, (4.1) 

co = Eo(--L), Z-C-L. 

We are interested in constructing ray trajectories diverging from some point x’ 
within the cylinder. Assuming that l o is a monotonically decreasing function of z, 
the rays can belong to one of three classes (see Fig. 1). If, at x = x’, P * 2 < 0, 
then L * i < 0 along the complete trajectory (class I); if P * E > 0 at x = x’, and 
if P * 2 > 0 at z = L, then L -2 > 0 along the complete trajectory (class II); finally, 
if at x = x’, L * L > 0 but for some 1 z / < L, L * 2 = 0, then for the remainder 
of the trajectory P . 2 < 0. By performing all of our measurements in the region 
z > L we need only consider trajectories of class II and eliminate the necessity of 
dealing with multiple valued functions. If co is monotonically increasing the situ- 
ation is naturally reversed. 

Directing the incident light parallel to the z axis allows another simplification in 
that the ray trajectories of the incident light will not be bent. The calculation of 
E, and Ho within V is then greatly simplified. 
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FIG. 1. Classification of ray trajectories. 

We may take advantage of the cylindrical symmetry of the experimental geometry 
by defining the vector p: 

p = (I - 22) * (x - x’) = -4 x [i x (x - x’)], (4.2) 

P=IfI, 6 = P/P. (4.3) 

Clearly, G,+ and G,+ depend solely on the three coordinates p, z and, z’, as opposed 
to six coordinates in the general case. 

5. SPECIFIC EXAMPLE 

For the remainder of this article we address ourselves to what is, perhaps, the 
most elementary specific case. We assume that, for 1 z 1 < L, c0 varies so slowly 
that it is adequately represented by the first two terms of a Taylor series about 
z = 0: 

Q(Z) = fP(1 - 2olz), lzl CL, (5.1) 

where a and 01 are both positive definite and aL < 1. 
In this section we shall determine the appropriate form of G,+ and G,+ in the 

region 1 z / < Z (I z’ j < Z throughout). Over this region, S’, 8, S? and i$ possess 
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series expansions in powers of orz and (YZ’. If we agree to ignore all terms of order 
cliL in our final result, we may immediately set 

d = 2 = l/r, (5.2) 

iij = fj . (5.3) 

But, in a typical light scattering experiment, we are observing the spectral distri- 
bution of the intensity over regions of w such that 1L > 1. Hence, we may not set 
9 = ar in the exponential in Eqs. (3.3) and (3.13). In the next section we shall 
show that -9’ has the form 

2 = ar(1 + 6), (5.4) 

where 6 is of order (YL and represents the first-order correction to Y due to the 
fact that cy # 0. As h&OIL2 may be of order unity, or larger, we many not drop the 
term i&r6 from eiiP. To insure that the third and higher order terms in the series 
expansion of 9 in powers of uz and olz’ are unnecessary we shall require 

Ro?L3< 1. 

To briefly summarize, we have found that G,+ and G,+ have the representation 

G,+ = G,+ = i I exp[i&(l + S)], [r-Z/ CL, (5.5) 

with the restrictions 
CUL < 1, (54 

IL> 1, (5.7) 

?e2L3 Q 1, (5.8) 

where the last restriction is a consequence of the range of validity of geometric 
optics, and in this case is clearly redundant. 

6. THE EIKONAL 

The Euler Lagrange equation defining the trajectory C(x, x’) may be written 
in the form (see Eq. (S 3.2.2)) 

d 
%nG = Vn. (6.1) 
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We define 5 by 

cos 5 = 2 * 9, sin 5 = $ * 0 (6.2) 

and note that, for trajectories of class II, 0 < 5 < ~-12 and z > z’. In our example IZ 
is a function of z so that, from Eq. (6.1) 

n sin 1; = n’ sin 5’ (6.3) 

along a ray trajectory, where the primes denote quantities evaluated at x = x’, 
the point of origin. Hence, 

cos 5 = [l - ($ sin [‘)‘]l”. (6.4) 

Expanding the right side through first order in LXZ and CLZ’ we obtain 

cos 5 = cos 5’[1 - a(z - z’) tan2 5’1 (6.5) 

and, from Eq. (6.3), 

sin 5 = sin {‘[l + (Y(Z - z’)]. (6.6) 

Along a particular trajectory p may be regarded as a function of z. From 

$ = tan t: = tan {‘[l + (Y(Z - 2’) sec2 5’1, (6.7) 

we obtain 

p = (z - 2’) tan 5’ C 1 + f (z - z’) sec2 6’1, 

r = [(z - z’)~ + pz]ljz = p sin i’, 
(6.9) 

9 = 11, ds n = 11, d.2" [ 1 + (-&)2]1’2 n 
C 

= ar [ 1 - $ (z + z’)] (6. IO) 

through first order. Equation (6.10) is correct when 1 z / < L and 1 z’ I < L. 
When 1 z’ I < L but z > L we may write 

9 = a(1 - 2aL)li2 rI + ur2 [ 1 - ff (L + z’)], (6.11) 

where 
I.1 = [(z - Q2 + (p - p2)211’2 2 (6.12) 
r2 = [(L - z’)2 + #Q]1/2 (6.13) 



ELECTROMAGNETIC THEORY OF LIGHT SCATTERING 587 

and pL is the value of p at the intersection of the ray trajectory with the line z = L 
(see Fig. 1). We now set 

PL = PO + APT (6.14) 

where p. is the intersection of the straight line through (p, z) and (0, z) and the 
line z = L (see Fig. 1). Expanding 9 through first order in Ap and making use of 
the relationship between similar triangles, we finally obtain 

where 

9 = a(1 - 2cL)‘iz R, + y (L - z’)~ R,/(z - z’), (6.15) 

R, = [p” + (z - z’)~}~/~. (6.16) 

Writing no = n(L), R = ( x 1, and expanding R, about R we obtain 

9’ = no ] R - fi . x’ + : (L - z’)~ set 81 + order s 

in the raditation zone (R> L). In Eq. (5.19, 

ii = x/R, 

case =ii*f. 
(6.18) 

The direction of propagation of the scattered radiation, P is quickly obtained 
from 

1 .S=n,VZ=fi+orderg. (6.20) 

The Green’s dyadics are, from Eqs. (6.17), (5.2), and (5.3), 

G,+ = G,+ = G+l, (6.21) 

G+=-&exp i&z, R-ii*xx’+T(L-z’)2sec8]/. 
I [ 

(6.22) 

At this point it is appropriate to introduce one further restriction; 

0 < 0 < 1.36 rad. (6.23) 

Clearly, if we allow 8 to approach r/2, our method of approximation breaks down. 
Our choice of 1.36 rad is to insure that 

$ (L - z’)2 set e < 10 d2, 

which is admittedly arbitrary. 
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7. SPECTRAL DISTRIBUTION 

We suppose that the fluid is excited by a monochromatic, linearly polarized plane 
wave with angular frequency w. propagating in the z direction. Taking 2 for the 
direction of polarization we may write 

in the region z > L. In order to determine 9(x, w), the spectral distribution of the 
time averaged radiated intensity, we must construct E, in the region [ z 1 < L. 
Applying the arguments of the previous section we may write 

where Lo = wJc and 

s 

z 
go = const + dz’ a(1 - cu.?). (7.3) 

As E. is continuous at z = L we obtain 

E, = j&%’ exp{i&orro[z - +x(L - z)“] - iuot} (7.4) 

in the region I z / < L. 
To obtain the scattered fields E,+ and HI+, we insert Eq. (7.4) into Eqs. (2.34) 

and (2.35) (Br = 0 in this example) and insert Eqs. (6.21) and (6.22) into Eqs. (3.15) 
and (3.16). We then integrate by parts and drop terms of order aL to obtain 

(7.5) 

F(ii, w) = j, d3X’ jrT dz’ &-i(‘+“t’) COS(~~~~ - wet’), (7.7) 

where, in Eq. (7.7), 

Yl = no 
[ 
ii - x’ - f (L - z’)~ set 8 I , (7.8) 

z. = n, [ z’-$(L-zy]. (7.9) 



ELECTROMAGNETIC THEORY OF LIGHT SCATTERING 589 

The spectral distribution is obtained by substituting Eqs. (7.5) and (7.6) into 
Eq. (3.18): 

( 5. 9(x, CO) = ca 2R sin y I( 1 2 f 4p&lFl”. (7.10) 

where 
cos y  = ii l ji. (7.11) 

We define l 2 and c3 by 

c2(t) = v-1/2 I v d3x’ e- ~(~-wo’lip)E1(x~, t), (7.12) 

The system is stationary as Ed is independent of time; Thus, by an application of 
the Wiener-Khintchine Theorem [13J, we obtain 

where 

W = s dt e-i(W-W’J)t(c2*(t) ~~(0)) + s dt e-i(w+“‘o)t(c3*(t) ~~(0)). 

Alternatively, defining the correlation function g by 

g(x’, x”; j t” - t’ I) = (q(x’, t’) Q(X”, t”)), 

we obtain 

W = ; j, d3x’ I, d3f j dt g(x’, x”; j t I) 

x {cos[~(=q’ - 9;) - &q’ - 9;) - (w - WJ t] 

+ CNwy - 2,“) + d&-q; - 9;) - (w + w,) t]}, 

where, in Eq. (7.17), 

Zl’ = Lqx’), 2; = Lqx”), 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

and similarly for -EpO’ and 2: . Both types of representation for W frequently 
appear in the literature on light scattering from homogeneous systems. A typical 
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molecular collision frequency is on the order of lO1’ set-l and a typical light 
frequency is on the order of 1014 sec- l. Hence, except at extraordinarily high 
temperatures or densities, the second term on the right of Eq. (7.15) and the second 
term in the curly brackets of Eq. (7.17) may be dropped. 

8. CONCLUDING REMARKS 

While we have outlined a viable method for constructing the spectral distribution 
of light scattered by fluctuations in an inhomogeneous fluid, this is just the first, 
and easiest, step towards expressing 4(x, w) in terms of the measurable properties 
of the fluid. In order to proceed further one must first determine Ed and/or 
pO(x) explicitly and then construct the required correlation functions by means 
of the appropriate transport equations. For the case of an inhomogeneous fluid 
under the influence of external fields, this requires a great deal more thermo- 
dynamic information than is needed for a homogeneous fluid. 

From the elementary example considered in the last four sections we can con- 
clude that the spatial transform (represented by c2 in the example) will no longer 
be simply a Fourier transform as in the homogeneous case, but rather will be some 
functional of l r, . Consequently, the dependence of 4 on x (specifically on 6’ in 
the example) will no longer be the same as in the homogeneous case. Hopefully, 
this difference can be utilized to determine how close the critical point may be 
approached before gravitational effects become significant. 
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